
84K01730-102 Revision: Basic
1/22/98

RTC Application Software

Software Classification Guide

Checkout and Launch Control System (CLCS)

84K01730-102

Approval:

Project Manager, CLCS
(NASA)

Date Project Manager, CLCS
(USA)

Date

Concurrence:

NASA CLCS Application
Software

Date USA CLCS Application
Software

Date

CLCS IV&V Date Date

NOTE: See “ Supporting Document Note ” on following page

84K01730-102 RTC Application Software Classification Guide Revision: Basic
1/22/98

i

PREPARED BY: Rich Ikerd, USK-284

Supporting Document Note: Acronyms and definitions of
many common CLCS terms may be found in the
following documents: CLCS Acronyms 84K00240 and
CLCS Project Glossary 84K00250.

84K01730-102 RTC Application Software Classification Guide Revision: Basic
1/22/98

ii

REVISION HISTORY

REV DESCRIPTION DATE

84K01730-102 RTC Application Software Classification Guide Revision: Basic
1/22/98

iii

LIST OF EFFECTIVE PAGES

Dates of issue of change pages are:

Page No. A or D* Issue or Change No. CR No. Effective Date**

84K01730-102 RTC Application Software Classification Guide Revision: Basic
1/22/98

iv

Table of Contents

1. INTRODUCTION.. 1-1

1.1 PURPOSE... 1-1
1.2 SCOPE.. 1-1
1.3 AUTHORITY.. 1-1
1.4 REFERENCE DOCUMENTS ... 1-1

2. CLASSIFICATION PROCESS... 2-1

2.1 PROCESS DEFINITION... 2-1
2.2 CRITICALITY LEVELS... 2-1
2.3 RISK LEVELS.. 2-3
2.4 SOFTWARE CLASSIFICATION DETERMINATION... 2-4

2.4.1 Critical .. 2-4
2.4.2 Sensitive .. 2-4
2.4.3 Operational ... 2-4

84K01730-101 Revision: Basic
7 January 1998

1-1

RTC APPLICATION SOFTWARE

SOFTWARE CLASSIFICATION GUIDE

CHECKOUT AND LAUNCH CONTROL SYSTEM (CLCS)

1. INTRODUCTION

The Real Time Control (RTC) Application Software Classification Guide provides the methodology for
classifying all software developed by, acquired by or sustained by the RTC Application Software organization.

1.1 PURPOSE

This practice establishes the methodology for classifying RTC Application Software. The classification of
software ensures a standard, efficient and cost-effective approach to the development for all software having
the same complexity and criticality.

1.2 SCOPE

This practice applies to all software developed by or acquired by the RTC Application Software organization.

1.3 AUTHORITY

This document is controlled by the Checkout and Launch Control System (CLCS) Application Software Chief
or the appointed representative.

1.4 REFERENCE DOCUMENTS

The following documents were used in the development of or are referenced in this practice:

84K00054-200 RTC Application Software Development Plan
KMI 2410.6 KSC Software Management, Assurance and Engineering Policy

84K01730-102 RTC Application Software Classification Guide Revision: Basic
1/22/98

2-1

2. CLASSIFICATION PROCESS

All software development requires engineering, management and assurance activities of varying degrees to ensure
accurate software is in compliance with requirements. The software classification process utilizes criticality and risk
factors to assist the developing community in determining the minimum engineering, management and assurance
activity required for each software element.

The factors to be used in the classification of software are performance, safety, cost, size, complexity, technology,
testability and stability. A process has been created that gathers the pertinent information, organizes it and provides a
classification matrix.

The classification process includes the breakdown of the software project into well defined classifiable software
elements. These elements generally correspond to the Computer Software Components (CSC) or Computer Software
Units (CSU) levels. This allows the classification at a granularity that can clearly identify the engineering,
management and assurance activities that must be performed for the element. In the interest of economy and
efficiency, each element is classified independently of all others.

2.1 PROCESS DEFINITION

The process of software classification is relatively straightforward given the guidelines of this practice. There is some
subjectivity in the determination process, so it is incumbent upon the developers to consult with their users and their
peers in an attempt to arrive at the most appropriate classification possible. Since this classification is used to
determine the level of oversight necessary in the development/validation process, it is imperative that sound
engineering principles be applied during the classification process.

The following process shall be used to classify a software component:

1. Determine the appropriate criticality level based on the guidelines defined in Section 2.2 Criticality Levels.

2. Determine the appropriate complexity level based on the guidelines defined in Section 2.3 Risk Levels.

3. Using the matrix defined in Section 2.4 Software Classification Determination, assign the appropriate software
classification to the component.

4. The Overview Design Specification section for the component shall be updated to indicate the classification, the
criticality level and the complexity level. This classification will be reviewed by the APTeam during the
Requirements Review Panel to ensure consistency across CSCIs.

2.2 CRITICALITY LEVELS

Criticality levels are assigned based on the consequences of a system failure resulting from a software error. An impact
value is assigned to each of the three criticality components (performance and operation, safety and development
cost/schedule) based on the criteria in Table 2-1. The average of these three values is the assigned criticality.

The evaluation of criticality must also consider mitigating factors to the severity of consequences resulting from a
function’s failure. Redundancy of a function will mitigate the loss of a single string implementing that function.
There are process and procedural controls that are employed as an additional level of criticality mitigation. The
physical hardware design may include built-in protections (e.g., relief valves, circuit breakers) that provide mitigation
should software function improperly. These mitigating factors are distinct from the Risk level (see next section). It is
possible to have low criticality, but high risk.

84K01730-102 RTC Application Software Classification Guide Revision: Basic
1/22/98

2-2

Table 2-1 Criticality Rating Criteria

CRITICALITY CATEGORIES, RATING CRITERIA AND NOTES
Criticality Driver Catastrophic

Impact Value = 4
Critical

Impact Value = 3
Moderate

Impact Value = 2
Low

Impact Value = 1

Performance
and Operation

Failure of the system could
cause loss of ability to
launch vehicles for
extended periods of time,
or loss of capability to
perform all mission
objectives. Failure is not
mitigated.

Failure could cause loss of
a critical function that
does not result in the
inability to launch
vehicles. Failure could
also cause lengthy
maintenance downtime,
loss of ability to perform
multiple mission
objectives or major
damage to a subsystem.
Failure is partially
mitigated.

Failure could cause loss of
a single mission objective
or reduction in operational
capability. Failure is fully
mitigated. A work-around
exists.

Failure could cause
inconvenience (e.g. re-run
of programs, restart of
computer, manual
intervention).

Note: Because of the
migration to CLCS from
the existing CCMS
system, there are few
application pieces that
meet this category. GLS is
rated a level 4.

Note: Major Prelaunch
sequencers are in this
category. Most other
sequencers have a
workaround (thus a lower
rating)

Note: The bulk of
applications fall into this
category. There are
workarounds, although
they may not be the most
efficient method of
processing.

Note: This category is
applicable to the lower
level reusable components,
which can be easily
supported by manual
operator override.

Safety Failure could result in loss
of life or vehicle or cause
severe personal injury.

Failure could result in
non-disabling personal
injury, serious
occupational illness, or
loss of emergency
procedures.

Failure could result in
minor injury

No safety implications.

Note: this covers High
Power and Major Hazard
systems.

Note: This is most control
logic. Also High Power
system(w/o associated
major Hazards)

Note: Most systems fall
into this category, because
of the bulk of procedural
(OMI) controls that are
established to preclude
injury.

Note: Most avionics
systems fit this category,
because they have little
potential to cause any
threat to safety.

Development
Cost/Schedule

Failure could result in
cost overruns large enough
to result in inability to
achieve operational
capability.

Failure could result in
large cost and schedule
over-runs. Alternate
means to implement
function are not available.

Failure results in
significant schedule delay.
Alternate means to
implement function are
available but at reduced
operational capability.
Full operational capability
delayed.

Failure results in minor
impact to cost and
schedule. Problems are
easily corrected with
insignificant impact to cost
and schedule.

Note: Because CLCS
is a transition from an
existing functional
system, categories 3
and 4 do not apply.
CCMS is an alternate
means to support the
functionality.

Note: N/A Note: N/A Note: The bulk of initial
development falls into this
category (impact is a delay
of full operational
capability).

Note: As development
matures, development
impact decreases (problem
space is well defined and is
mature).

84K01730-102 RTC Application Software Classification Guide Revision: Basic
1/22/98

2-3

2.3 RISK LEVELS

Software component risk is based on the complexity, maturity of technology, requirements definition and stability and
testability. A risk value is assigned to each of the four risk components based on the criteria in Table 2-2. The average
of these values is the assigned criticality.

Risk is independent from Criticality and should be rated based on the criteria specified. The tendency is to rate high
criticality items with a high risk (and this is not necessarily always true).

Table 2-2 Risk Assessment Criteria

RISK CATEGORIES, RATING CRITERIA AND NOTES

Risk Drivers
High

Risk Value = 3
Moderate

Risk Value = 2
Low

Risk Value = 1

Complexity • Highly complex control
logic operations

• Unique devices/complex
interfaces

• Many interrelated
components

• Function uses different end
items in different modes of
system operation

• Moderately complex control
logic operations

• May be device dependent
• Moderately complex

interfaces
• Several interrelated

components
• Function behaves differently

in different modes of system
operation

• Simple control/logic
operations

• Device independent
• Function operates in only

one mode of system
operation

Note: This covers most major
Integrated (complex) sequencers

Note: Multi-mode system
operations.

Note: Non-integrated software,
standalone system tests, display
S/W.

Maturity of Technology • New/Unproven algorithms,
languages and support
environments

• High probability for
redesign

• Little or not experience base
in this application

• Proven on other systems
with different applications

• Moderate experience base

• Proven on other systems
with same application

• Mature experience
• High reuse

Note: Because of the build a little-
test a little process, this applies
only to the initial IPT (HMF)

Note: Most applications fit this
criteria. Builds upon the HMF
base.

Note: When an IPT moves to a
second or third phase, the
experience base is robust, this
category is appropriate.

Requirements
Definition & Stability

• Rapidly changing, baselines
not established

• Many organizations
required to define
requirements

• Much integration required

• Potential for some changes
• Some integration required

• Solid requirements - little
potential for change

• Little to no integration
required

Note: Because there is an
existing requirements base,
there is little risk that
requirements will change once
they are baselined.

Note: For major integrated
operations.

Note: Most systems fall in this
category

Note: Applies when existing
GOAL requirements are mature
enough for a simple
transformation to CLCS.

Testability • Difficult to test
• Requires the analysis of a

large amount of data to
determine acceptability of
results

• Many operational
environment and input
variations

• Requires some test data
analysis to determine
acceptability of results

• Moderate amount of
operational environment
and input variations

• Acceptability of test results
easily determined

• Few operational
environment and input
variations

Note: With the hierarchical
design methodology, even the
most complex sequence is
broken into smaller parts.

Note: Very complex sequences fit
this category.

Note: The bulk of systems require
some analysis and have various
input conditions.

Note: Applies to the simple low
level reuse items.

84K01730-102 RTC Application Software Classification Guide Revision: Basic
1/22/98

2-4

2.4 SOFTWARE CLASSIFICATION DETERMINATION

Software component classification is based a combination of the assigned criticality and risk levels. Defining the
applications classification properly ensures the appropriate level of engineering, management and quality oversight is
applied. There are three classification levels of in the RTC Application Software environment. A component
“bubbles” to the highest level of criticality applicable. Table 2-3 provides a matrix for determining the classification
based on the previously assigned criticality and risk levels. Even though safety is not specifically addressed, all
components with a safety critically of 3 or 4 fall into the sensitive or critical categories. The matrix implicitly
addresses safety concerns, when there is a safety critical component, more than the minimal test is required.

Table 2-3 Software Classification Matrix

Risk
Criticality 3 2 Low

4 Critical Critical Sensitive
3 Critical Sensitive Operational
2 Sensitive Sensitive Operational
1 Operational Operational Operational

The engineering, management and assurance oversight required for a component is based on its classification. The
definition of this oversight is provided in the RTC Application Software Development Plan 84K00054-200.

2.4.1 Critical

Critical components are the “front line” items whose operation must be ensured to allow a successful commitment of
the vehicle to space flight. The criticality of these components requires a level of quality support above the baseline.
IV&V personnel are anticipated to participate at this level. Critical software includes some high energy control logic
components, Launch Sequencing/Launch Commit and Cryo load sequences. It does not include most system
test/monitor support software. Approximately 10% of all RTC software is classified critical.

2.4.2 Sensitive

Sensitive components encompass the control and monitor of items that, if not operated properly, could result in
personnel injury or hardware damage. This class of items includes “reactive” responses to off-nominal conditions and
the control of high energy systems (e.g., cryogenics, hydraulics, power units, etc.). The sensitivity of these components
requires a minimum level of independent oversight to ensure proper validation of requirements. Product Assurance
Engineer (PAE) support is required. Approximately 25% of the application space fits the sensitive category. IV&V
personnel may audit this function to ensure procedure compliance.

2.4.3 Operational

Operational support components make up a large portion of the RTC Application Software elements and are classified
as non-critical. These are used for “baby-sit” support and the control and monitoring of non-hazardous systems and the
monitoring of systems where “reactive control” has been delegated to external systems (e.g., a smart HIM, on-board
sequence, etc.). An operational support component would not have an associated time critical safing function. The
benign nature of these components requires less external oversight. IPTs are chartered to validate these components.
PAE auditing is used to ensure procedural compliance. The operations components are essentially tested by a
Responsible Organization Representative (ROR) without any explicit oversight. Approximately 65% of the
applications space fits the operational category.

